

DC/DC CONVERTER Avionics / Military Application

Application notes

Using COTS Converter for Avionics/Military Applications

1- General

This application note underlines the different requirements that are commonly in use for avionics and military power supplies and describes how to comply using GAIA Converter COTS products.

1-1 From Custom Power Supply to Standard Converters

Prior to the last decade (90's), military and avionics high-reliability power requirements were met in most cases by assembling discrete military components leading to custom-designed power supplies under a long and expensive process.

In the mid 90's, the release of a US Directive the «Perry's Directive» instructs military contractors to use Commercial off the Shelf (COTS) products. This philosophy directed military procurements to focuss less on military specifications (with the extensive use of hermetically sealed semiconductors, microcircuits, ..) and more on global application performance by stripping away all of extraneous requirements that drive cost.

1-2 Considering COTS Converters

Commercial off the Shelf (COTS) converters are standard, «ready to use», mutiple applications oriented products. There are a lot of positives associated with using COTS converters in military or avionics applications. The use of COTS parts «mass produced» are cost-effective, they are versatile and can be configured in distributed or centralized power supply formats, they are used and qualified in a lot of different applications. Development time is drastically shorter over a traditionnal custom approach.

1-3 Applying COTS Converters in Avionics/Military Applications

However just dropping into COTS converters for avionics/military power supplies has to be carefully analyzed as there are some barriers and specific requirements to meet.

This application note resume those special requirements to fullfill military or avionics power supply specifications with COTS.

The barriers can be grouped into 4 categories :

- Input voltage requirements,
 - Electromagnetic interference requirements,

6

- Environmental requirements,
- Military/avionics unique aspects.

The following sections will describe the different barriers from input voltage that rarely coincide from one application to another, electromagnetic interference and levels with many different standards depending on type of service branch up to environmental requirements including a lot of aspect such as temperature, humidity, dust, salt, fog, solar radiation, explosive decompression, shocks, and military unique aspect including special outputs for special sensors, protections, choice of components, The different sections will explain how to comply with GAIA Converter COTS products.

REDEFINING THE SOURCE OF POWER

[©] Gaia Converter FC97-002.01/11 Revision I

2- Input Voltage Requirements

Input voltage requirements in avionics/military applications come from many different power sources depending on available power generating systems on-board aircraft, vehicles, shipboards, These possibilities can be divided in AC sources and DC sources.

• <u>AC sources :</u>

Direct alternating current sources are coming from generators attached to engine, static inverters, ...

• DC sources :

DC sources are coming either from direct battery source or indirect rectified DC sources from AC power source.

Input voltage sources are different for each service branch (aircraft, vehicle, shipboard, ...). The following table is an attempt to classify the different sources available depending on service branch and describes the different voltage sources available for power supplies :

Type of Sources	Voltage Source	Service Branch
	115Vac/400Hz single or 3 phases	Aircraft
Alternate Current Sources	440Vac/60Hz 3 phases	Shipboard
	115Vac/60Hz 3 phases	Shipboard
	24Vdc battery	Vehicles
	28Vdc battery	Aircraft
DC Current Sources	155Vdc rectified from AC source	Shipboard
	270Vdc rectified from AC source	Aircraft

Examples of Input Voltage avaible On-board

These voltage sources and requirements are governed by many different standards whereas the most frequently used are :

- The US MIL-STD-704/MIL-HDBK-704 standard : "Aircraft Electric Power Characteristics".
- The US MIL-STD-1275 standard : "Characteristics of 28 VDC Electrical Systems in Military Vehicles".
- The International D0-160 standard : "Environmental Conditions and Test Procedures for Airborne equipment".
- The European En 2282 standard : "Characteristics of Aircraft Electrical Supply".
- The British BSI 3G 100 : "Characteristics of Aircraft Electrical Power Supplies".
- The British DEF STAN 61-5 Part 6 Electical Power Supply 28 VDC Electrical Systems in Military Vehicles.

- The French AIR2021 standard : «Caractéristiques des Réseaux Electriques à Bord des Aéronefs».
- The Airbus ABD13 standard : «Equipment Requirement for Supplier, Electrical Power Supply.
- The Airbus ABD100 chap. 8 standard : «Equipment Requirement for Supplier, Electric.
- The Boeing 7E7B3-0147 « Eletrical power quality and design requirements».
- The Canadian C-26-003-001/MS-001 Shipboard Power System.
- The US MIL-STD-1399 standard : "Interface Standard for Shipboard Systems, Electrical Power, Alternating Current".

These standards describe the many different conditions of input voltage configurations and in particular :

- The permanent input voltage range in normal, abnormal and emergency conditions,
- The brown-out and transient levels in normal and abnormal conditions,
- The spikes levels,
- The start up voltage levels,
- The power interruption conditions

The following sections will describe for all different conditions the main input voltages requirements for :

- <u>DC Input Voltage</u>,
 - 28 Vdc input voltage requirements,
 - 24 Vdc input voltage requirements,
 - 270 Vdc input voltage requirements
- <u>AC Input Voltage</u>,

115 Vac input voltage requirements 60Hz or 400Hz or variable frequency, 230 Vac and other input voltage requirements,

 $^{\mbox{C}}$ Gaia Converter FC97-002.01/11 Revision I

2-1 Requirements for 28Vdc Input Voltage (Airborne Applications)

For 28Vdc input voltage used mainly for airborne applications, the different standard requirements are described in the following table.

This table gives also the GAIA Converter DC/DC converter characteristics and additionnal front-end modules to be compliant. The different standards describe for the 28Vdc input voltage the different conditions such as :

- <u>Permanent conditions (Steady State) :</u>
 - in normal conditions
 - in abnormal conditions
 - in emergency conditions

The permanent input ranges are achieved by using standard GAIA Converter DC/DC modules without any additional devices.

- Transient conditions (Transient) :
 - in low transient (brown-out) conditions
 - in high transient in normal/abnormal conditions
 - in shut-down conditions
 - in spike conditions

The transient and spikes are more aggressive in amplitude and are achieved by using GAIA Converter additionnal front-end module designated "PGDS" or «LGDS» series or GAIA Converter ultra wide input series of DC/DC's (> 5:1 ultra wide input range).

The shut-down level is satisfied by an external hold up device (such as an external capacitance and/or a GAÏA Converter hold-up module «HUGD» series).

International Standards	<	Steady State	e>	<	Transient	>	<- Spike ->	GAIA Converter DC/DC and Front-end
	Normal	Abnormal	Emergency	Low Normal	High Abormal	Low Abnormal		Module Compliance
MIL-STD-704A (cat A)	25 - 28,5V	23,5 - 30V	17 - 24V	10V/50ms	80V/50ms	OV/up to 7s	+/-600V/10µs/TBD 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V PGDS series : 10V/15s or GAIA DC/DC range 9-36V PGDS/LGDS series HUGD series with capacitor* FGDS series
MIL-STD-704F	22 - 29V	20 - 31,5V	16 - 29V	18V/15ms	50V/50ms	0V/up to 7s	/	GAIA DC/DC range : 16-40V or 16-80V GAIA DC/DC 16-40V with 50V transient or 16-80V HUGD series with capacitor
DO-160D (cat B) spike cat. A	22 - 30,3V	20,5 - 32,2V	18V	12V/30ms	60V/100ms	OV/up to 7s	+/-600V/10µs/50 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V PGDS series : 10V/15s or GAIA DC/DC range 9-36V PGDS/LGDS series HUGD series with capacitor* FGDS series
DO-160D (cat Z) spike cat. A	22 - 30,3V	20,5 - 32,2V	18V	12V/30ms	80V/100ms	OV/up to 7s	+/-600V/10µs/50 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V PGDS series : 10V/15s or GAIA DC/DC range 9-36V PGDS/LGDS series HUGD series with capacitor* FGDS series
DO-160E (cat Z) spike cat. A	22 - 30,3V	20,5 - 32,2V	18V	12V/30ms	80V/100ms	OV/up to 7s	+/-600V/10µs/50 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V PGDS series : 10V/15s or GAIA DC/DC range 9-36V PGDS/LGDS series HUGD series with capacitor* FGDS series
EN2282	24 - 29V	21 - 32V	18 - 29V	12V/30ms	60V/50ms	OV/up to 5s	+/-600V/10µs/50 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V PGDS series : 10V/15s or GAIA DC/DC range 9-36V PGDS/LGDS series HUGD series with capacitor* FGDS series
BSI 3G100 Part 3 (from constant frequency AC generator	24 - 29V	21 - 32V	18 - 29V	14V/50ms	80V/100ms	OV/up to 7s	+/-600V/10µs/50 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V PGDS series : 10V/15s or GAIA DC/DC range 9-36V PGDS/LGDS series HUGD series with capacitor* FGDS series
AIR2021E	24 - 29V	20,5 - 32,2V	17V	12V/50ms	60V/100ms	OV/up to 5s	+/-600V/50µs/50 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V PGDS series : 10V/15s or GAIA DC/DC range 9-36V PGDS/LGDS series HUGD series with capacitor* FGDS series
ABD100-D (conventionnal DC network)	25,5 - 30,3V	23,5 - 32,5V	17V	17V/15ms	46V/100ms	OV/up to 5s	+/-600V/10µs/50 0hm	GAIA DC/DC range : 16-40V or 16-80V GAIA DC/DC range : 16-40V transient 50V or 16-80V HUGD series with capacitor* FGDS series
ABD100-D (NBPT DC network)	24 - 32V	/	18,5V	18,5V/5s	36V/1s	OV/up to 5s	+/-600V/10µs/50 0hm	GAIA DC/DC range : 9-36V, 16-40V or 16-80V GAIA DC/DC range : 9-36V, 16-40V or 16-80V HUGD series with capacitor* FGDS series

Note * : the duration of low abnormal condition OV has to be specified by the user, the maximum duration will be limited according to the power needed and the HUGD maximum capacitance, refer to HUGD datasheet

 $^{\mbox{\scriptsize C}}$ Gaia Converter FC97-002.01/11 Revision I

2-2 Requirements for 24/28Vdc Input Voltage (Groundborne Applications)

For 24/28Vdc input voltage used mainly for military vehicles, the different standard requirements are described in the following table.

This table gives also the GAIA Converter DC/DC converter characteristics and additionnal front-end modules to be compliant. The standards describe for the 24/28Vdc input voltage the different conditions such as :

<u>Permanent conditions (Steady State)</u>:
 in normal conditions

The permanent input ranges are achieved by using standard GAIA Converter DC/DC modules without any additional devices.

- Transient conditions (Surge) :
 - in low transient (brown-out) conditions
 - in high transient (surge) conditions
 - in spike conditions
- <u>Engine start conditions (Engagement)</u>:

 in initial engine engagement conditions
 in cranking conditions

The transients, spikes are more aggressive in amplitude and energy while the engine start engagement is very low value. Those requirements are achieved by using GAIA Converter additionnal front-end module designated "PGDS" or «LGDS» series.

International Standards	Steady State	Start Engine	Cranking	< Su Low	rge> High	Spike	GAIA Converter DC/DC and Front-end Module Compliance
MIL-STD-1275A (generator + battery)	25 - 30V	6V/1s	16V/30s	18V/100ms	40V/50ms	+/-250V/70µs/15mJ	GAIA DC/DC range : 9-45V or 9-36V with 40V/100ms PGDS series : 6V/1s FGDS series
MIL-STD-1275A (battery only)	20 - 27V	6V/1s	16V/30s	/	/	+/-250V/70µs/15mJ	GAIA DC/DC range : 9-45V or 9-36V PGDS series : 6V/1s FGDS series
MIL-STD-1275A (generator only)	23 - 33V	/	/	15V/500ms	100V/50ms	+/-250V/70µs/15mJ	GAIA DC/DC range : 9-45V or 9-36V PGDS/LGDS series FGDS series
MIL-STD-1275B (generator + battery)	25 - 30V	6V/1s	16V/30s	18V/100ms	40V/50ms	+/-250V/0.1ms/15mJ	GAIA DC/DC range : 9-45V or 9-36V with 40V/100ms PGDS series : 6V/1s FGDS series
MIL-STD-1275B (battery only)	20 - 27V	6V/1s	16V/30s	/	/	/	GAIA DC/DC range : 9-45V or 9-36V PGDS series : 6V/1s /
MIL-STD-1275B (generator only)	23 - 33V	/	/	10V/500ms	100V/50ms	+/-250V/70µs/15mJ	GAIA DC/DC range : 9-45V or 9-36V PGDS/LGDS series FGDS series
MIL-STD-1275C/D (generator + battery)	25 - 30V	6V/1s	16V/30s	20V/500m	40V/50ms	+/-40V/1ms/15mJ +/-250V/70µs/15mJ	GAIA DC/DC range : 9-45V or 9-36V with 40V/100ms PGDS series : 6V/1s FGDS series
MIL-STD-1275C/D (battery only)	20 - 27V	6V/1s	16V/30s	/	/	+/-40V/1ms/15mJ +/-250V/70µs/15mJ	GAIA DC/DC range : 9-45V or 9-36V with 40V/100ms PGDS series : 6V/1s FGDS series
MIL-STD-1275C/D (generator only)	23 - 33V	/	/	15V	100V/50ms	+/-100V/1ms/15mJ +/-250V/50µs/15mJ	GAIA DC/DC range : 9-45V or 9-36V PGDS/LGDS series FGDS series
MIL-STD-1275E	20 - 33V	12V/1s	16V/30s	18V/500ms	100V/50ms	+100V/1ms/2J +/-250V/70µs/2J	GAIA DC/DC range : 9-45V or 9-36V PGDS/LGDS series
DEF STAN 61-5 issue 5 (generator + battery)	25 - 30V	6V/1s	>15V	20V/500ms	40V/50ms	+130V/-100V/<10µs +90V/-60V/10µs +70V/-40V/5ms	GAIA DC/DC range : 9-45V or 9-36V with 40V/100ms PGDS series : 6V/1s FGDS series PGDS/LGDS series PGDS/LGDS series
DEF STAN 61-5 issue 5 (battery only)	22 - 27V	1V/1s	>10V	/	/	+130V/-100V/<10µs +90V/-60V/10µs +70V/-40V/5ms	GAIA DC/DC range : 9-45V or 9-36V with 40V/100ms External capacitance FGDS series FGDS series PGDS/LGDS series
DEF STAN 61-5 issue 5 (generator only)	15 - 40V	/	/	15V/500ms	80V/80ms	+280V/-220V<10µs +130V/-70V/10µs +110V/-50V/5ms	GAIA DC/DC range : 9-45V or 9-36V PGDS/LGDS series FGDS series FGDS series PGDS/LGDS series
DEF STAN 61-5 issue 6 (24V platform)	18 - 38V	8V/50ms	15V/20s	-40V/10ms	50V/10ms	+/-200V(+Vs)/0.2µs/50 0hm +50V/-150V/<10µs 174V (+Vs)/350ms/1 0hm	GAIA DC/DC range : 9-45V or 9-36V with 40V/100ms PGDS series : 6V/1s FGDS series FGDS series LGDS DEF STAN series

2-3 Requirements for 270Vdc Input Voltage

For 270Vdc input voltage used mainly in airborne applications, the different standard requirements are described in the following table.

This table gives also the GAIA Converter DC/DC converter characteristics.

The different standards describe for the 270Vdc input voltage the different conditions such as :

- <u>Permanent conditions (Steady State) :</u>
 - in normal conditions
 - in abnormal conditions
 - in emergency conditions

The permanent input ranges are achieved by using standard GAIA Converter DC/DC modules without any additional devices.

- <u>Transient conditions (Transient) :</u>
 - in low transient (brown-out) conditions
 - in high transient in normal/abnormal conditions
 - in shut-down conditions
 - in spike conditions

The transient and spikes are also achieved by using GAIA Converter ultra wide input series (5:1) DC/DC module without any additionnal devices. The shut down level is satisfied by an external hold up device (such as an external capacitance and/or a GAÏA Converter hold up module «HUGD» series). It has to be mentionned that the 270Vdc input voltage is coming from the rectification of the primary 115Vac/3 phases input bus.

International Standards	<	> Steady State>		<> Transient>			< Spike>	GAIA Converter DC & Front-end	
	Normal	Abnormal	Emergency	Low Normal	High Abnormal	Low Abnormal		Module Compliance	
MIL-STD-704B	250 - 280V	245 - 285V	240 - 290V	125V/50ms	475V/10ms	0V/up to 7s	/	GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V With external capacitor	
MIL-STD-704C	250 - 280V	245 - 285	240 - 290V	125V/50ms	475V/10ms	0V/up to 7s	/	GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V With external capacitor	
MIL-STD-704D	250 - 280V	245 - 285V	240 - 290V	125V/50ms	475V/10ms	0V/up to 7s	/	GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V With external capacitor	
MIL-STD-704E	250 - 280V	240 - 290V	250 - 280V	200v/10ms	350V/50ms	0V/up to 7s	/	GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V With external capacitor	
MIL-STD-704F	250 - 280V	240 - 290V	250 - 280V	200v/10ms	350V/50ms	0V/up to 7s	/	GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V GAIA DC/DC range : 120 - 480V With external capacitor	

2-4 Requirements for 115Vac/400Hz Single Phase Input Voltage

For 115Vac single phase input voltage used mainly in airborne application, the different standard requirements are described in the following table. This table gives also the GAIA Converter modules characteristics compliance. The different standards describe for the 115Vac input voltage the different conditions such as :

- Permanent conditions (Steady State) :
 - in normal conditions
 - in abnormal conditions
 - in emergency conditions

The permanent input ranges are achieved by using standard GAIA Converter AC/DC modules without any additional devices.

- <u>Transient conditions (Transient)</u> :
 - in low transient (brown-out) conditions
 - in high transient in normal/abnormal conditions
 - in shut-down conditions
 - in spike conditions

The transient and spikes are also achieved by using GAIA Converter AC/DC modules without any additionnal devices. The shut down level is satisfied by an external hold up device (such as an external capacitance and/or a GAÏA Converter hold up module «HUGD» series). • <u>Power Factor Correction :</u>

The standards also define the need of a PFC and the maximum total harmonic distorsion (THD) and current harmonic components admissible. This is achieved by GAIA Converter PFC series.

International Standards	<> Steady State>			<> Transient>			PFC requirement	GAIA Converter AC/DC and Front-end
	Normal	Abnormal	Emergency	Low Normal	High Abnormal	Low Abnormal	Frequency Harmonic Distor.	Module Compliance
MIL-STD-704A (cat. A)	110 - 118 Vac	104 - 124Vac	106 - 122 Vac	64 Vac/50ms	180 Vac/100ms	OV/up to 7s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
MIL-STD-704A (cat. C)	104 - 118 Vac	98 - 124 Vac	100 - 122 Vac	64 Vac/20ms	180 Vac/100ms	OV/up to 7s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
MIL-STD-704D/E	108 - 118 Vac	100 - 125 Vac	108 - 118 Vac	80 Vac/10ms	180 Vac/50ms	OV/up to 7s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
DO-160D (cat. A) spike cat.A	100 - 122 Vac	97 - 134 Vac	1	/	180 Vac/100ms	OV/up to 7s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
DO-160D (cat. Z) spike cat.A	100 - 122 Vac	97 - 134 Vac	/	/	180 VAC/100ms	OV/up to 7s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
EN2282	108 - 118 Vac	98 - 132 Vac	102 - 122 Vac	60 Vac/30ms	180 Vac/50ms	0V/up to 5s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
BSI 36100 Part 3 (from constant frequency AC generator)	108 - 118 Vac	98 - 132 Vac	104 - 122 Vac	60 Vac/50ms	180 VAC/100ms	OV/up to 7s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
AIR2021E	108 - 118 Vac	98 132 Vac	102 - 122 Vac	58 Vac/30ms	180 Vac/80ms	OV/ up to 5s	400Hz THD : not applicable	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz- 800 Hz /
ABD 100-D (variable frequency)	104 - 122 Vac	96 - 130 Vac	104 - 122 Vac	71 Vac/15ms	180 Vac/100ms	OV/up to 5s	360-800Hz THD: < 10.55%	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz 800 Hz Compliant with HGMM series
MIL-STD-704F (variable frequency)	108 - 118 Vac	100 - 125 Vac	100 - 125 Vac	80Vac/10ms	180 Vac/10ms	OV/up to 7s	360-800Hz THD: < 10%	GAIA AC/DC range : 95 Vac - 140 Vac Transient : 71V/15ms & 180V/100ms With external capacitor Frequency : 360 Hz & 800 Hz Compliant with HGMM series

AïA

2-5 Others Input Voltage Requirements

Many other different input voltages are existing for a lot of other type of applications in ships, submarines, drones, missiles, vehicles,

Some of these different standards are resumed in the table thereafter with some of their different requirements such as :

<u>Permanent conditions (Steady State)</u>:
 in normal conditions

- <u>Transient conditions (Transient)</u> :
 - in low transient (brown-out) conditions
 - in high transient conditions
 - \bullet in shut-down conditions

Please consult GAIA Converter technical support to verify product compliance.

International Standards	Nominal input voltage	Steady state variation	Brownout	Transient	GAIA Converter DC/DC Module Performance
MIL-STD-1399 (Type I)	115Vac/60Hz	+/-5%	92Vac/2s	138Vac/2s	Consult Factory
MIL-STD-1399 (Type II)	440Vac/60Hz	+/-5%	352Vac/2s	528Vac/2s	Consult Factory
MIL-STD-1399 (Type III)	440Vac/60Hz	+/-2%	416Vac/0.2s	464Vac/0.2s	Consult Factory
STANAG 1008 Edition 9	440Vac/60Hz	+/-7%	-22%/2s	+22%/2s	Consult Factory
E509 (French Naval Standard)	440Vac/60Hz	+/-5%	-15%/0.5s	-15%/0.5s	Consult Factory
STANAG 1008 Edition 9	115Vac/60Hz	+/-7%	-22%/2s	+22%/2s	Consult Factory
C-26-003-001/MS (Canada)	115Vac/60Hz	+/-5%	120Vac/30ms	80Vac/70ms	Consult Factory
E509 (French Naval Standard)	115Vac/60Hz	+/-5%	-15%/0.5s	+10%/0.5s	Consult Factory
MIL-STD-704F	115Vac/60Hz	105-125Vac	31Vac/83ms	152Vac/83ms	Consult Factory
MIL-STD-1399/NAVSEA SE 010-AA-SPN-010	155Vdc	108.5Vdc	/	/	Consult Factory
MIL-PRF-GCS600A	600Vdc	565-635Vdc	475Vdc/15ms	725Vdc/15ms	Consult Factory
ABD0013	26Vac/400Hz	23,7 - 27,8Vac	/	/	Consult Factory

Application notes

3- Electromagnetic Interference Requirements

Although most of the military specifications have been relaxed, there is still one area where it remains stringent is the electromagnetic interference area.

Without special care or additionnal filters, the majority of COTS converters will not meet alone those requirements. Dedicated filters from knowledgeable military or avionics power supply designers are required to achieve those specifications.

3-1 General

Electromagnetic interference compatibility is of primarly importance in avionics/military applications and are divided in 4 main classifications :

- conducted emission (CE)
- conducted susceptibility (CS)
- radiated emission (RE)
- radiated susceptibility (RS)

Conducted noise is transmitted along the electrical cables that connect the input power bus to the equipment while radiated noise occurs through the unintended transmission or reception of noise signals. EMI emission standards address noise generated by the equipment whereas EMI susceptibility standards describe the noise environments that the equipment must tolerate without malfunction.

From a design perspective conducted emission are further divided into common-mode and differential-mode noise. Differentialmode conducted noise results from current flowing in one terminal of the converter and out the other. Common-mode noise, on the other hand, flows through the ground and returns in the same direction in both the power and return lines. Differentialmode noise is generally associated with switching currents whereas common-mode noise are primarily a result of pulsating voltages in the circuit.

3-2 Requirements

The requirements to control the electromagnetic interference are governed by different standards whereas the most popular are as follow :

• The US MIL-STD-461C standard : "Electromagnetic Interferance Characteristics, Requirements for Equipment".

- The US MIL-STD-461D/E/F standard : «Requirements for the control of electromagnetic Interference Emissions and Susceptibility».
- The DO-160C/D/E/F/G standard : "Environmental Conditions and Test Procedures for Airborne Equipment".
- The French GAM-EG 13B standard : "Essais Généraux et Environnement des Matériels".
- The UK Def-Stan 59-41 standard : "Electromagnetic compatibility Part 1 7"
- The German VG 95-373 standard : "Elektromagnetische Verträglichkeit von Geräten"

One of the main functions of the various electromagnetic interference (EMI) standards is to establish a common technique for the measurement and characterization of EMI performance reproductable from one test lab. to another. A summary of tests applicable for power supply is shown hereafter.

International Standards	MIL-STD-461C	MIL-STD-461D/E/F	GAM-EG13B	D0-160C/D/E/F/G
Conducted emission (CE) : Low frequency High frequency	On power leads : CEO1 : 30 Hz to 20 KHz CEO3 : 20 KHz to 50 MHz	On power leads : CE101 : 30 Hz to 10 KHz CE102 : 10 KHz to 10 MHz	On power leads 62C1 : 30 Hz to 50 Mhz 62C2 : 10 Khz to 50 Mhz	Section 21
Conducted susceptibility (CS) : Low frequency High frequency Spikes :	On power leads : CSO1 : 30 Hz to 50 KHz CSO2 : 50 KHz to 400 MHz on power leads : CSO6 : spikes CS10/11 : damped transient	On power leads & bulk cable : CS101 : 30 Hz to 150 KHz CS114 : 10 KHz to 200 MHz On bulk cable & power leads : CS115 : cable injection impulse CS116 : damped transient	On power leads 63C1 : 30 Hz to 50 KHz 62C3 : 10 KHz to 50 MHz 63C4 : 50 KHz to 400 MHz 63C4 : impulse	Section 20
Radiated emission (RE) : Magnetic Field Electric Field	RE01:30 Hz to 30 KHz RE02:30 KHz to 10 GHz	RE101 : 30 Hz to 100 KHz RE102 : 10 KHz to 18 GHz	62R1 : 30 Hz to 50 KHz 62R3 : 10 KHz to 10 GHz	Section 21
Radiated susceptibility (RS) : Magnetic field Electric field	RSO1 : 30 Hz to 30 KHz RSO3 : 14 KHz to 10 GHz	RS101 : 30 Hz to 100 KHz RS103 : 2 KHz to 40 GHz	63R1 : 30 Hz to 30 KHz 63R3 : 10 KHz to 10 GHz	Section 20

A further complicating issue for EMI compliance design is that not all standards measure the same characteristics in the same way as exemple :

• MIL-STD-461C measures input conducted emission using a current probe and states the emission in dBµA

• MIL-STD- 461D/E/F uses an input line impedance stabilization network (LISN) and measures noise in dBµV

• the DEF-STAN-59-41 uses a current probe an input LISN and specifies the emission in dBµA.

3- Electromagnetic Interference Requirements (continued)

3-3 GAÏA Converter Modules Compliance with EMI Requirements

This section applies for all GAÏA Converter modules consult also individual datasheet for further filter descriptions.

3-3-1 Conducted Emission (CE)

GAÏA Converter modules use soft-switching topologies to minimize switching noise. This noise is defined in terms of input ripple current and consists of relatively high fundamental component (switchning frequency above 500 KHz for majority of GAÏA Converters products) and its harmonic. As a result :

- GAÏA Converter modules comply with «low frequency» conducted emission stand alone.
- GAÏA Converter modules comply with «high frequency» conducted emission with simple additionnal external filter.

3-3-2 Conducted Susceptibility (CS)

Conducted susceptibility requirements definie various noise sources which when conducted on the power lines should not cause malfunction of the converter.

- GAÏA Converter modules integrate an input filter that provides in most cases input attenuation of approximatly 30 dB
- GAÏA Converter modules comply in most cases with «low frequency» conducted susceptibility stand alone with the output voltage maintained within it's total regulation limits, nevertheless a simple additionnal filter can be used.
- GAÏA Converter modules comply with «high frequency» conducted susceptibility with a simple additional external filter with the output voltage within it's total regulation limits
- GAÏA Converter modules comply with «Spikes» conducted susceptibility with additionnal external transient supressor with the output voltage within it's total regulation limits.

3-3-3 Radiated Emission (RE)

Radiated emission govern the electric and magnetic fields emitted.

GAÏA Converter modules switch above 500 KHz such that there is no noise source in the range of RE01 (or RE101).

GAÏA Converter modules are 5 sides metal package and the 6th side could be designed by a PCB ground shield under the converter which limits high frequency emission from the converter it self in the range of RE02 (or RE102).

Most radiation usually emanates from the input cabling or load circuitry and that is were carefull system design is essential.

Compliance should be tested at the complete system level and is heavily dependant on the system design grounding, shielding and cabling.

GAÏA Converter modules comply in most cases with electric and magnetic radiated emission stand alone with a PCB ground plane.

3-3-4 Radiated Susceptibility (RS)

Radiated susceptibility requirements dictate electric and magnetic fields level which should not cause degradation or malfunction of a system. As with emission, potential problem areas are input cables and output circuitry.

GAÏA Converter modules comply with electric and magnetic radiated susceptibility stand alone.

6

3-3-5 Compliance Summary

The following table resumes GAÏA Converter products compliance with EMI requirements for the most popular MIL-STD-461C, MIL-STD-461E/F and DO-160D/E/F standards. Consult individual datasheet for additionnal filter descriptions.

Specifications	MIL-STD-461C	MIL-STD-461E/F	D0 160D/E/F	GAIA Converter Module Compliance
Conducted emission (CE) : Low frequency High frequency	CE 01 CE 03	CE 101 CE 102	Section 21 Section 21	module compliant stand alone (see product datasheet) module compliant with additional filter
Conducted susceptibility (CS) : Low frequency High frequency	CS 01 CS 02	CS 101 CS 114	Section 20 Section 20	module compliant with additional filter module compliant with additional filter
Radiated emission (RE) : Magnetic field Electrical field	RE 01 RE 02	RE 101 RE 102	Section 21 Section 21	module compliant stand alone (see product datasheet) module compliant stand alone (see product datasheet)
Radiated susceptibility (RS) : Magnetic field Electrical field	RS 01 RS 03	RS 101 RS 103	Section 20 Section 20	module compliant stand alone (see product datasheet) module compliant stand alone (see product datasheet)

4- Environmental Requirements

Unlike it's commercial counterparts, military and avionics electronics has much more intensive operationnal microenvironment. They have to be qualified to tri-service requirements encompassing land mobile, airborne, surface and sub-surface naval conditions which include shocks, vibrations, humidity, temperature, salt, altitude, explosive decompression, fungus, ... and overall reliability metrics.

Environment specific criteria are developped based on the plattform and location of the converters, level of requirements qualification procedures are governed by many standard whereas the most popular are :

• The RTCA/D0-160 standard : "Environmental Conditions and test Procedures for Airborne Equipment".

- The US MIL-STD-810 standard : "Environmental Test Method".
- The US MIL-STD-202 standard : "Environmental Test Method".
- The French GAM-EG 13 standard : "Essais de comptabilité à l'environnement climatique, mécanique"
- The UK BS3G100 standard : "Environmental Conditions Test Method".

The following table presents some of the various environmental testing for the well-known standards MIL-STD-810E, MIL-STD-202G and D0-160D.

Tests	MIL-STD-810E Standard	MIL-STD-810G Standard	MIL-STD-202G Standard	D0-160D Standard
Life at high temperature	Method 501.3	Method 501.5	Method 108A	Section 4
Low temperature	Method 502.3	Method 502.5		Section 4
Temperature cycling	/	/	Method 102A	Section 5
Temperature shock	Method 503.3	Method 503.5	Method 107G	/
Low Pressure (Altitude)	Method 500.3	Method 500.5	Method 105C	Section 4
Humidity (Cyclic)	Method 507.3	Method 507.5	/	Section 6
Humidity (Steady state)	/	/	Method 103B	/
Solar radiation	Method 505.3	Method 505.5	/	/
Rain	Method 506.3	Method 506.5	Method 104A	Section 10
Salt spray	Method 509.3	Method 509.5	Method 101E	Section 14
Fungus	Method 508.4	Method 508.6	Method 106G	Section 13
Sand and dust	Method 510.3	Method 510.5	Method 110A	Section 12
Explosive atmosphere	Method 511.3	Method 511.5	Method 109C	Section 9
Leakage	Method 512.3	Method 512.5	Method 112E	/
Vibration	Method 514.4	Method 514.6	Method 201A	Section 8
Shock	Method 516.4	Method 516.6	Method 213B	Section 7
Acceleration	Method 513.4	Method 513.6	Method 212A	/
Acoustic noise	Method 515.4	Method 515.6	/	/
Gunfire	Method 519.4	Method 519.6	Method 207B	Section 7
Temperature, humidity, vibration	Method 520.1	Method 520.3	/	/
Icing	Method 521.1	Method 521.3	/	Section 24
Vibro-acoustic	Method 523.1	Method 523.3	/	1

 $^{\mbox{\scriptsize C}}$ Gaia Converter FC97-002.01/11 Revision I

For locations, phone, fax, E-Mail see back cover

4- Environmental Requirements (continued)

To verify the suitability of GAIA Converter modules, a complete qualification test program has been undertaking by an independent laboratory part of the French Defense Agency CELAR which includes the following environmental qualifications : The levels applied are those generally admitted for aircrafts, shipboard, or vehicle applications. Please consult factory for higher levels or other environmental tests.

T ests	Standards	GAIA Converter DC/DC module qualification
Life at high temperature	per MIL-STD-202G Method 108A	Operation : 1.000 hrs @ +105°C case Storage : 1.000 hrs @ +125°C ambient
Low temperature	per MIL-STD-810E/G Method 502.3/502.5	Storage : 1.000 hrs @ -55°C ambient
Temperature cycling	per MIL-STD-202A Method 102A	Number of cycles : 200 Temperature change : -40°C / +85°C Transfert time : 40 min. Steady state time : 20 min
Temperature shock	per MIL-STD-202G Method 107G	Number of shocks : 50 Temperature change : -55°C / +105°C Transfert time : < 10 sec Steady state time : 30 min
Low Pressure (Altitude)	per MIL-STD-810E/G Method 500.3/500.5	40.000ft, unit functioning 1.000ft/min to 70.000ft,unit functioning
Humidity (Cyclic)	per MIL-STD-810E/G Method 507.3/507.5	Damp heat : 60% to 88% relative humidity Cycle I : (31°C to 41°C) : 240Hrs
Humidity (Steady state)	per MIL-STD-202G Method 103B	Damp heat : 93 % relative humidity Temperature : 40°C Duration : 56 days
Salt spray	per MIL-STD-810E/G Method 509.3/509.5	Temperature : 35°C Duration : 48 hrs
Vibration Frequency range Acceleration	per MIL-STD-810D/G Method 514.3/514.6	10 cycles in each axis frequency : 10 to 60Hz/60 to 2 KHz acceleration : 0.7mm/10g
Shock (Half sinus) Peak acceleration Duration	per MIL-STD-810D/G Method 516.3/516/6	3 shocks in each axis Peak acceleration : 100g duration : 6ms
Bumps	per MIL-STD-810D/G Method 516.3/516.6	2000 bumps in each direction duration : 6ms peak acceleration : 40g

5- Military/Avionics Unique Requirements

There are other military-unique aspects revolving around the demands of each military application among them the most typicals are :

- Overcurrent and overvoltage settings
- Synchronization
- Unique Output Voltages (trim function)
- Components Selection

5-1 Overcurrent and Overvoltage

Overcurrent protection (OCP) and overvoltage protection (OVP) are features that are commonly requested in military applications. OCP is the function of limiting the amount of current a power supply will provide during a condition of high current demand. This function protects the power supply against damage during this condition. On the other hand, OVP is a limiting function that prevents the power supply from providing too high of an output voltage. Should the power supply loose regulation, OVP will shut-off or prevent the power supply form delivering voltage higher than a set level. Typical trip ranges for OCP and OVP are 110-135% of the rated full load and 110-130% of the output voltage, respectively. However, many applications do not use the full rated load of the power supply and modified OCP is required for reduced levels. Often, standard OVP set points are set too high to provide the protection necessary to prevent downstream component damage should an overvoltage condition exist. If a lower limit is required, it should be specified and the internal OCP and/or OVP limits adjusted accordingly. This protection is provided when modules are manufactured to a customer's specific requirements.

5-2 Synchronization

Synchronization is the function of operating more than one module at the same switching frequency. By having the converters operate at the same frequency, certain power system predictability and signature occurs. On the input line the current demand when the module power switch is on occurs at the same time for all modules. Although this produces a very large momentary input current draw during each "on" cycle, it is predictable and for many tactical military applications this is very important because systems must operate at a known EMI level in order to manage radiated emissions. The same effect occurs on the output voltage during output rectifier, filter conduction and main switching activity. The alternative of free running modules may produce on average a lower peak current draw on the input, but some systems cannot live with the unpredictability of the input and output conducted and emitted spectral content.

5-3 Unique Output Voltages (Trim Function)

Standard output voltages such as 2.5, 3.3, 5, 12, 15, 24 and 28 volts are readily available; however, in addition to these standard voltages, unique output voltages for military systems may also be required. For various reasons, voltages outside the available range are required for unique applications such as radars (voltages such as 8 and 9 VDC are required to compensate for some line loss characteristics). Most GAIA Converter modules have a "trimming" function that allows the user to adjust the output voltage through an external resistor network. However, these adjustments are intended for finetuning the output voltage and not for establishing a new output voltage for the converter. Their range is limited and some functions with set limits, such as OIP and OVP, do not change with trimming. Finally, an modules optimum performance is designed around the specified output voltage. Once the module is adjusted externally to another voltage, it is no longer operating in its optimized range. When a unique voltage is required the integrating activity should specify the output required, the overvoltage point, as well as the overcurrent limit. Some military providers can accommodate non-standard output voltage.

5-4 Components Selection

Components selection covers wide areas, but a key point of focus is over-coming restricted materials—and we can pointout in particular aluminum electrolytic capacitors, optocouplers or component encapsulation.

Tactical military requirements still exist that restrict the use of aluminum electrolytic capacitors. This is because of their propensity to leak and stop working after a period of many years. Commercial applications do not have these restrictions; None of GAIA Converter modules are using electrolytic capacitors.

Another requirements is the restriction of optocoupler. This is because of their low life time. None of the GAIA Converter modules use optocoupler. Another requirement often pointedout is the necessity to use sealed packages components instead of plastic encapsulated microcircuits (PEMS). A lot of studies have been realized to demonstrate that plastic encapsulated components are as much reliable and certainly more industrialized and mass produced to their sealed counterparts.

At GAIA Converter we use plastic encapsulated microcircuits (PEM's), the global product being encapsulated into a protective potting to ensure protection against harsh environment.

For more detailed specifications and applications information, contact :

International Headquarters GAÏA Converter - France ZI de la Morandière 33185 LE HAILLAN - FRANCE Tel. : + (33)-5-57-92-12-80 Fax : + (33)-5-57-92-12-89

North American Headquarters GAÏA Converter Canada, Inc 4038 Le Corbusier Blvd LAVAL, QUEBEC - CANADA H7L 5R2 Tel.: (514)-333-3169 Fax: (514)-333-4519

Represented by :

Information given in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed for the consequence of its use nor for any infringement of patents or other rights of third parties which may result from its use. These products are sold only according to GAIA Converter general conditions of sale, unless otherwise confirmed by writing. Specifications subject to change without notice.